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1

Coordinatizations

NEIL WHITE

1.1. Introduction and Basic Definitions

The purpose of this chapter is to provide background and general results
concerning coordinatizations, while the more specialized subtopics of binary
and unimoduiar matroids are covered in later chapters. The first section of this
chapter is devoted to definitions and notational conventions. The second
section concerns linear and projective equivalence of coordinatizations.
Although they are not usually explicitly considered in other expositions of
matroid coordinatization, these equivalence relations are very useful in
working with examples of coordinatizations, as well as theoretically useful as
in Proposition 1.2.5. Section 1.3 involves the preservation of coordinatiza-
bility under certain standard matroid operations, including duality and
minors. The next section presents some well-known counterexamples, and
Section 1.5 considers characterizations of coordinatizability, especially char-
acterizations by excluded minors. The final five sections are somewhat more
technical in nature, and may be omitted by the reader who desires only an
introductory survey. Section 1.6 concerns the bracket conditions, another
general characterization of coordinatizability. Section 1.7 presents techniques
for construction of a matroid requiring a root of any prescribed polynomial in
a field over which we wish to coordinatize it. These techniques are extremely
useful in the construction of examples and counterexamples, yet are not
readily available in other works, except Greene (1971). The last three sections
concern characteristic sets, the use of transcendentals in coordinatizations,
and algebraic representation (i.e., modeling matroid dependence by algebraic
dependence). Some additional topics which could have been considered here,
such as chain groups, are omitted because they are well-covered in other
readily available sources, such as Welsh (1976).

Since the prototypical example of a matroid is an arbitrary subset of a finite
dimensional vector space, that is, a vector matroid, and since many matroid
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operations have analogs for vector spaces, which are algebraic and therefore
easier to employ, a natural and important problem is to determine which
matroids are isomorphic to vector matroids. This leads directly to the concept
of coordinatization. In this chapter we assume that matroids are finite.

A coordinatization of a matroid M(S) in a vector space V is a mapping
{:S—V such that for any A= S, 4 is independent in M<>{], is injective
(one-to-one) and {(A) is linearly independent in V.

Thus we note that a dependent set in M may either be mapped to a linearly
dependent set in V' or mapped non-injectively.

We note that {(s) =0 if and only if s is a loop. Moreover for non-loops s
and t, {(s) is a non-zero scalar multiple of {(¢)if and only if {s, t} is a circuit (i.e., s
and ¢ are parallel). Thus {(s) = {(t) only if {s,t} is a circuit, and we see that
non-injective coordinatizations exist only for matroids which are not com-
binatorial geometries. Furthermore, we also see that coordinatizing a matroid
is essentially equivalent to coordinatizing its associated combinatorial
geometry.

If B is any basis of M(S), then let W be the span of {(B) in V. Then dim
W=rk M and {(S)= W. Thus we may restrict the range of { to W, and thus,
without loss of generality, all coordinatizations will be assumed to be in a
vector space of dimension equal to the rank of the matroid. If » is the rank of
M(S), then for a given field K there is, up to isomorphism, a unique vector
space V of dimension n over K. Thus we may also speak of a coordinatization of
M over K, meaning a coordinatization in V.

Let GF(q) denote the finite field of order 4. A matroid which has a
coordinatization over GF(2), or GF(3), is called binary, or ternary, respectively.
A matroid which may be coordinatized over every field is called unimodular (or
regular). Further characterizations of these classes of matroids will be given
later in this chapter and in the following chapters.

It is often convenient to represent a coordinatization in matrix form. If {:S —
V is a coordinatization of M(S) of rank n, and E a basis of V, let A, be the
matrix with n rows and with columns indexed by S whose a-th column, for
aes, is the vector {{(a) represented with respect to E. Since the matrix 4, g also
determines the coordinatization { if we are given E, we often simply say 4, pisa
coordinatization of M(S).

1.2. Equivalence of Coordinatizations and
Canonical Forms

If ¢:V >V is a non-singular linear transformation and (:S—-V is a
coordinatization of M(S), then ¢<{:S— V is also a coordinatization. If Q is
the non-singular n x n matrix representing ¢ with respect to the basis E
of V, then A, ;=QA,;. On the other hand, we may easily check that
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Ayor g = Ay g5 SO multiplying 4, ; on the left by Q may also be regarded as
simply a change of basis for the coordinatization (.

We recall from elementary linear algebra that multiplying A4, ¢ on the left by
a non-singular matrix Q is equivalent to performing a sequence of elementary
row operations on A, and that any such sequence of elementary row
operations on A, ; may be realized by an appropriate choice of 0. We will say
A, pand QA, p are linearly equivalent (where Q is non-singular), and any matrix
linearly equivalent to A4,; may be regarded as representing the same
coordinatization { of the same matroid with respect to a new basis of V.

Conversely, given a coordinatization matrix 4, ;, we may choose any new
basis E' of ¥V, and A, . is linearly equivalent to 4, ;. As a special case of
this, we pick E' = {(B), where B is a fixed basis of the matroid M(S).

Then, by reordering the elements of S so that the first n elements are the
elements of B, we have a matrix 4, ;. in echelon form

BS—-B
A g = (I,) L)

where I, is the n x n identity matrix, with columns indexed by B, and L is an
n x (N — n) matrix with columns indexed by S — B, where N =|[§|.

As yet another way of viewing linear equivalence, let W, be the subspace
spanned by the rows of 4, ;. in an N-dimensional vector space U. What we
have seen is that W, is independent of E’, and that indeed the choice of E'
actually amounts to a choice of a basis for W,. Thus every linear equivalence
class of n x N matrices coordinatizing M(S) corresponds to an n-dimensional
subspace of U. Conversely, every n-dimensional subspace of U corresponds to
a coordinatization of some rank n matroid on S, which is a weak-map image of
M(S).

Remark. Algebraic geometers regard the collection of all n-dimensional
subspaces of an N-dimensional vector space as a Grassmann manifold, and
the coordinatizations of M(S) correspond to a certain submanifold.

Besides row operations, another operation on A, ; which leaves invariant
the matroid coordinatized by A,p is non-zero scalar multiplication of
columns. This may be accomplished by multiplying A,  on the right by an
N x N diagonal matrix with non-zero diagonal entries. Combining this with
the previous operations, we say that two n x N matrices 4 and A’ are
projectively equivalent if there exist Q, an n x n non-singular matrix, and D, an
N x N non-singular diagonal matrix, such that A'=QAD.

Let us recall that projective n — 1 dimensional space P is obtained from V by
identifying the non-zero vectors of each one-dimensional subspace of V to give
a point of P. Let n:V — PuU {0} be the resulting map, where 0 is an element
adjoined to P which is the image of O V. Then if {:S — V is a coordinatization,
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no{ is an embedding of M(S) into P L {0}, except that parallel elements become
identified in PU {0}. If T":V — V is a linear transformation, let T = noT'on ™/,
which is well-defined since T' preserves scalar multiples. Then we call T a
linear transformation of Pu{0}. Since non-zero scalar multiples in V are

identified in P u {0}, we immediately have the following:

1.2.1. Proposition. Let J and L be n x N matrices over the field K. Then if J
coordinatizes M(S) and J is projectively equivalent to L, then L also coordina-
tizes M(S). J and L are projectively equivalent if and only if their corresponding
coordinatizations {; and {; determine the same projective embedding up to
change of basis in PU {0}, i.e., no{; = Tomo{,, where T is a non-singular linear
transformation of Pu {0}.

We next ask whether there exists a canonical form for a projective
equivalence class of coordinatizations, as echelon form was for a linear
equivalence class. For a given coordinatization

A=(I,[L)

in echelon form with respect to a basis B, let L* be the matrix obtained by
replacing each non-zero entry of L by 1. In fact, L™ is just the incidence matrix
of the elements of B with the basic circuits of the elements of S — B, so it is
independent of the particular coordinatization. Now let ' be the bipartite
graph whose adjacency matrix is L*. Thus each entry of 1 in L* corresponds
to an edge of I'. Let T be a basis (i.e., spanning tree) of I".

1.2.2. Proposition. (Brylawskiand Lucas, 1973) A is projectively equivalent to a
matrix A" which is in echelon form with respect to B, and which has 1 for each
entry corresponding to an edge of T.

Proof. This may be accomplished by non-zero scalar multiplication of rows
and columns, and is left as an exercise. O

The matrix A’ of the preceding proposition is said to be in (B, T)-canonical
form, or when B and T are understood, canonical projective form. The simplest
canonical projective form and most useful version of this canonical form
occurs when M(S) has a spanning circuit C. Then by choosing B to be C — {c}
for some ceC, the column corresponding to ¢ in L has no zeros, hence we may
pick T to correspond to the n entries of column ¢, together with the first non-
zero entry in every other column of L.

A major use of this projective canonical form is in actual computation with
coordinates and in presenting examples.

1.2.3. Example. Let M(S) be the 8-point rank 3 geometry whose affine
diagram appears in Figure 1.1. If we choose the standard basis B = {b,, b,, b5}
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Figure 1.1. An 8-point rank 3 geometry.

and spanning circuit C = {by, b,, b3, ¢}, we may coordinatize M over Q by the
following matrix in canonical projective form:

b, b, by ¢ d e f g
1 0 0 1t 11 01
0 1 0 1t 10 1 0
0o 0 1 101 -1 2

1.2.4. Example. Let M(S) be the 4-point line, that is, U, ,, the uniform
geometry of cardinality 4 and rank 2, whose bases are all of the subsets of S of
cardinality 2, where |S| = 4. Then any coordinatization of M(S) over any field
K may be put in the following projective echelon form:

1 0 1 1
01 1 «

where e K — {0, 1}. Thus we can say that up to projective equivalence, there is
a one-parameter family of coordinatizations of U, ,. We note that this
parameter « is equivalent to the classical cross-ratio of four collinear points
in projective geometry.

Since U, , is the simplest non-binary matroid, one might be led to surmise
the following, first proved by White (1971, Proposition 5.2.5), and later by
Brylawski and Lucas (1973) using more elementary techniques. The proof is
omitted here, because of its fairly technical nature.

1.2.5. Proposition. Let M(S) be a binary matroid and K a field over which M
has a coordinatization. Then any two coordinatizations of M over K are
projectively equivalent.

Brylawski and Lucas (1973) have investigated t’ . question of which
matroids have, over a particular field K, any two coordinatizations projec-
tively equivalent. Such matroids are said to be uniquely coordinatizable over K,
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and among their findings is that ternary matroids are uniquely coordinatiz-
able over GF(3) (although not over an arbitrary field, as the example of U, ,
shows).

1.2.6. Example. We return to Example 1.2.3. Thisexample is, in fact, a ternary
matroid, which is uniquely coordinatizable not only over GF(3), but over
every field K such that char K # 2. To see this, we first note that the matrix
given over Q may be regarded as a coordinatization of M over every field
K such that char K # 2. If we take an arbitrary coordinatization of M over
any such field K and put that coordinatization in canonical projective form
with respect to B and C, the elements by, b,, b,, and ¢ are assigned the vectors
shown, and then the vector for d is determined since d is on the intersection
of the two lines b;b, and bjc. Likewise eeb,bynb,c, feb,bynde, and
geb,bsncf.

1.3. Matroid Operations

We now note that coordinatizability is preserved under various matroid
operations, including duality, minors, direct sums, and, in a restricted sense,
truncation. This material is also found scattered through Chapter 7 of White
(1986), and is collected here for convenience.

1.3.1. Proposition. Let A, ; coordinatize M(S) over a field K, and let W, be the
row-space of A, pin U, avector space of dimension N = | S| over K. Then if M*(S)
denotes the dual matroid of M, the subspace Wé orthogonal to W, is the subspace
of U corresponding to a coordinatization of M*. Thus M is coordinatizable over
K if and only if M* is.

Furthermore, if A, g is in echelon form, A, g = (I, L), then A* = (— L', Iy_,) is
a coordinatization of M*, where t denotes transpose.

Proof. Let B be a basis of M(S)and we may assume A,  is in echelon form with
respect to B, since W, is invariant under linear equivalence. Thus A, p = (I,, L),
and we note that A* =( — L', Iy_,) has each of its rows orthogonal to each row
of A, g, hence the rows of A* are a basis of W;. Let M'(S) be the matroid
coordinatized by the columns of A*. Since S — B corresponds to the columns

Figure 1.2. A 7-point rank 3 matroid M.
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of Iy_,in A* we see that S — Bis a basis of M'. Conversely, if B' is any basis of
M’, S — B'is a basis of M by a similar argument. Since B was an arbitrary basis
of M, M’ = M* and the theorem follows. O

1.3.2. Example. Let M(S) be the 7-point rank 3 matroid shown in Figure 1.2,
along with a coordinatization 4 over R given below. Then M*, a rank 4
matroid which is shown in Figure 1.3, has the coordinatization A* over R
as in the preceding proposition.

a b c d e f g
1 001110
A=10 1 0 1 1 O 1],
0011011
a b c d e f g
~1 -1 -1 1 0 0 0
A*z—l —1 001 00
—1 0 -1 0010
0 -1 —-10 0 0 1

Figure 1.3. M*, the dual of the matroid M in Figure 1.2, where abfy, aceg, bcef are
coplanar sets.

1.3.3. Proposition. Let M(S) be a matroid.
(1) If M is coordinatizable over a field K, then so is every minor of M.
(2) If M =M, ®M,, then M is coordinatizable over K if and only if both M ,
and M, are coordinatizable over K.
(3) If K is sufficiently large and M is coordinatizable over K, then the
truncation T(M) is coordinatizable over K.

Proof. (1) If A, g coordinatizes M, then any submatroid M — X is coordinat-
ized by deleting the columns of A, ; corresponding to X. Since contraction is
the dual operation to deletion, (1) follows from the preceding proposition.
For a direct construction of a coordinatization of a contraction, see the
following remark and example.

(2) If AV and A® are matrices coordinatizing M ; and M, respectively, then



8 Neil White

AD 0
(% )

is a coordinatization of M = M, ® M,. The converse follows from (1).

(3) The construction of truncation (to rank n— 1, say) described in
Section 7.4 of White (1986) may be carried out within the vector space V
provided only that the field is sufficiently large to guarantee the existence of a
free extension (by one point) within V. O

the matrix direct sum

1.3.4. Remark. To construct the coordinatization of a contraction M(S)/X
from a coordinatization 4, ; of M, we first choose a basis I of the set X. By row
operations on A, ; we may make the first n —k entries 0 in each column
corresponding to I, where k = |I|. Then delete the columns corresponding to
X, as well as the last k rows.

This construction really amounts to simply taking a linear transformation
T from V, the vector space in which M is coordinatized, to a vector space of
dimension n — &, such that the kernel of T is precisely span ({X).

1.3.5. Example. Let M be the matroid shown in Figure 1.4, with coordinatiz-
ation 4 over Q. Let X = {e,f}. Then row operations on 4 lead to the matrix 4,
and deletion of the appropriate rows and columns gives A", a coordinatization
of M/X, which is put into canonical projective form A4”. The matroid M/X is
shown in Figure 1.5.

a b ¢ d e f g h
1 0 00 111 0
A 01 00 330 0
0010 -2 70 1y’
0 0 0 1 0 0 2 -5
a b cd e f g h
0 0 0 1 0 0 2 -5
A’[3 1 00 0 0 -3 0
001 0 =27 0 1]’
1 000 1 t 0
a b ¢ d g h
, (0 001 2 —5)
A=<—3 1t 00 -3 o)
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Figure 1.4. A matroid M.

Figure 1.5. M/X, with M as Figure 1.4.
dh gb i

1.4. Non-coordinatizable Geometries
We now give several examples of combinatorial geometries which may not be
coordinatized over any field.

The first example is a rank 3 matroid obtained from the Desargues
configuration by replacing the 3-point line klm by three 2-point lines, ki, km,
and Im, as shown in Figure 1.6. Coordinatization of this matroid over a field K
is equivalent to embedding this configuration in the projective plane P(2, K).
However, P(2, K) is a Desarguesian plane, which means simply that in this
configuration, klm must be collinear, so coordinatization is impossible. This
matroid is called the non-Desargues matroid.

Figure 1.6. The non-Desargues matroid.

K
{

A second example of a non-coordinatizable geometry, the non-Pappus
matroid, is obtained from the Pappus configuration in a manner similar to that
just given for the Desargues configuration. This is iliustrated in Figure 1.7,
where x, y, and z are non-collinear, violating the usual assertion of Pappus’
Theorem.

A third example is a class of examples which are the smallest non-
coordinatizable geometries in terms of cardinality. The simplest member of
this class, discovered by Vamos (1971), is described by letting S
={a,b,c,d,a’,b',c',d'}, and letting the bases of M(S) be all the 4-element
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Figure 1.7. The non-Pappus matroid.
1 2 3
X%g; %Z
4 5 6

Figure 1.8. A Vamos cube.

subsets of S except aa’ bb', bb' cc', cc’ dd', ad’ dd', aa’ ¢c’. This matroid of rank 4
may be illustrated by the affine diagram in Figure 1.8, even though it cannot
actually exist in an affine space as a consequence of its non-coordinatizability.

First we verify that M is actually a combinatorial geometry. This is easy in
terms of circuit exchange. The circuits of M are the five 4-element subsets
which are not bases, as listed above, together with each 5-element subset of S
which does not contain any of the 4-element circuits. Now if C, and C, are
circuits with C, # C,, and xeC, nC,, we first note that |C; uC,| = 6, since
circuits are incomparable and no two of the 4-element circuits have an
intersection of more than two elements. Hence (C, U C,) — x has cardinality
at least 5, and contains a circuit. Hence M(S) is a geometry.

Next we show that M is, in fact, non-coordinatizable. Suppose, to the
contrary, that M has been embedded in P(3, K) for some field K. Then dd’,
which is not coplanar with ad’cc’, must intersect the plane aa’cc’ in a point e.
But since ecad'dd’ ncc'dd’, we must have ecaa’ ncc. By a symmetric
argument, bb’ must also intersect aa’'cc’ in e, but then b,¥, d, and d’' are
coplanar, contradicting the fact that bb'dd’ is a basis of M(S).

Finally we note that further members of this class of examples may be
constructed by taking the same set S and the five 4-element circuits given for
M, and then listing additional 4-element circuits (and letting all other 4-
element subsets of S remain as bases) subject to two constraints:

(1) bb'dd’ remains a basis;

(i) no two of the 4-element circuits intersect in more than two eclements.
The argument that the result is a combinatorial geometry which is non-
coordinatizable proceeds exactly as above.

The member of this class of examples which has the maximum number of 4-
element circuits is the one which has, besides the five given 4-element circuits,
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abed, a’b'c'd’,abc'd’,ab'ed’,ab'c’d, a'bed’, a'bc’d, and a'b'cd. If bb'dd’ were also to
be made a circuit, the resulting geometry would be isomorphic to a three-
dimensional binary affine space, AG(3,2).

The members of a fourth (and very large) class of non-coordinatizable
geometries are obtained by taking two geometries G, and G, such that there is
no field over which both G, and G, may be coordinatized, and then
constructing a geometry G, which has both G, and G, as minors. There are
many ways of constructing such a geometry G,, with perhaps the two most
natural being the direct sum of G, and G,, and the direct sum truncated to a
rank equal to the rank of G, or G,, whichever is larger.

1.5 Necessary and Sufficient Conditions
for Coordinatization

The most successful coordinatization conditions are the excluded minor
characterizations of the classes of matroids coordinatizable over certain fields.
We will discuss these first, and follow with a consideration of conditions for
coordinatizability over arbitrary fields.

If A is a class of matroids, an excluded minor characterization of A is
collection E of matroids with the property that for every matroid M, MeA if
and only if there does not exist NeE with N isomorphic to a minor of M.
Although E could be either finite or infinite, we are primarily interested in this
type of characterization when E is finite. It is elementary to check that 4 has an
excluded minor characterization if and only if A4 is a hereditary class, that is, a
class of matroids closed under the taking of minors.

The class of binary matroids is by far the best understood class of matroids,
because of its particularly simple structure.

1.5.1. Proposition. A matroid is binary if and only if it has no minor isomorphic
to the 4-point line, U, 4.

This and many other characterizations of binary matroids are given in
Chapter 2.

A particular binary matroid we will frequently refer to is F,, the Fano plane,
given by the following binary coordinatization:

a b ¢c d e [ g
1 00 1 1 01
01010 11
00101 11

This matroid is also sometimes referred to as PG(2, 2), the projective plane over
GF(2), and is illustrated in Figure 1.9.
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Figure 1.9. The Fano matroid, F,.

The excluded minor characterization of ternary matroids was discovered
and proved by R. Reid, ¢. 1971, but never published. The result, which follows,
was published independently by Bixby (1979) and by Seymour (1979).

1.5.2. Proposition. A matroid is ternary if and only if it has no minor isomorphic
to one of

U, s, U% s (which is U; 5), F, or F%.

A third excluded minor characterization, that of unimodular matroids by
Tutte (1958), stands as one of the crowning achievements of matroid theory.
This theorem is very deep, as it was first proved by way of Tutte’s Homotopy
Theorem. There are other proofs now available which are more elementary
{Seymour 1979).

1.5.3. Theorem. A matroid is unimodular if and only if it has no minor
isomorphic to one of

U, 4 F,, FE.

Another equally striking characterization of unimodular matroids was
found by Seymour (1980). He shows that every unimodular matroid may be
built up in certain ways from graphic matroids, cographic matroids, and
copies of a particular matroid called R,,.

These and several other characterizations of unimodular matroids are
discussed in Chapter 3.

There are some very interesting excluded minor characterizations for
several classes of graphic matroids. These characterizations are discussed
more completely in Chapter 2, but are included here for the sake of
completeness.

1.5.4. Theorem. (Tutte 1959). A matroid is graphic if and only if it has no minor
isomorphic to

U2,4’ F77 F’;s M(KS)*’ or M(K3,3)*'
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Here K5 and K5 5 are the Kuratowski graphs, the complete graph on five
vertices, and the complete bipartite graph on two sets of three vertices,
respectively. Also, M(G) is the polygon or cycle matroid of the graph G, and
M(G)* is the orthogonal matroid of M(G), namely the bond matroid of G. By
duality,a matroid is cographic if and only if it has no minor isomorphicto U, ,,
F,, F%, M(Ks), or M(K; ;). The excluded minor characterization of planar
graphic matroids is a very pleasing generalization of Kuratowski’s Theorem,
which states that a graph is planar if and only if it has no homeomorphic image
of a subgraph isomorphic to K5 or K3 3. A matroid is planar graphic if and
only if it has no minor isomorphic to U, 4, F,, F%, M(K;), M(K5)*, M(K; ),
M(K; ;)*, or, equivalently, if and only if it is graphic with no minor isomorphic
to M(Ks) or M(K; ;). Thus the planar graphic matroids are precisely those
matroids which are both graphic and cographic. One more interesting
subclass of the graphic matroids is the class of series-parallel matroids, which
are characterized by the excluded minors U, 4 and M(K,).

A number of interesting relations may be deduced from these excluded
minor characterizations. For example, a hereditary class is closed under
duality if and only if the dual of each excluded minor is also an excluded minor.
This is the case for each of the classes considered above, except graphic and
cographic matroids, which are duals of each other.

We can also see that a hereditary class A4 is contained in another hereditary
class A" if and only if every excluded minor of A" has itself some minor which is
an excluded minor for A. For example, graphic and cographic matroids are
unimodular, and unimodular matroids are binary as well as ternary.

We now turn to general necessary and sufficient conditions for coordinati-
zation. The following result of Tutte was the first such set of conditions and it
was also an important step in his proof of the excluded minor characterization
of unimodular matroids.

1.5.5. Proposition. Let M(S) be a matroid and assume that for every hyperplane
(or copoint) H of M is given a function Fy:S— K, where K is a field, so that
(1) kernel Fy = H for every hyperplane H.
(2) For every three hyperplanes H,, H,, H of M containing a common coline,
there exist constants «,0,, s, €K, all non-zero, such that a Fy +
o Fy, +o3Fy, =0.
Then M may be coordinatized over K. Conversely, any coordinatization of M
over K may be used to construct functions Fy satisfying (1) and (2).

In order to prove this proposition, we first need a lemma. Let W denote the
vector space of all functions from S into K, and V the subspace of W spanned
by {fy|H is a hyperplane of M}.
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1.5.6. Lemma. Let {f} be given satisfying the hypotheses of Proposition 1.5.5,
and let B={b,b,,...,b,} be a basis of M(S). Then the functions fy,
corresponding to the basic hyperplanes H,= B — b; form a basis of V.

Proof of lemma. A={fy, fu,-..,fu, is linearly independent in V¥, for
Sfu(b)#0ifand only if i = j, for 1 <i<n,1<j<n It remains to be shown
that fyespan A for every hyperplane H.

Let H be an arbitrary hyperplane of M, and let h=n—1 —|HNB|. We use
induction on A, noting that the case h =0 is trivial, since then fyeA.

Assume by induction hypothesis that f;espan A4 for all hyperplanes J such
that n—1—|JnB|<h.

Now we assume by re-indexing that HNB = {b,b,,..., b}, I=n—h—1.
Since HnB is independent, we may extend it to a basis
{by,byy...,bpa14+1,a;54,...,a,—1} of H. Then

L= {bl,bz,'--ablsal+17al+29~'-aan—Z}

is a coline of M contained in H. By choosing b’eB— L,b"eB— H', we
construct distinct hyperplanes H'=Lub’ and H” = Lubd”. Furthermore,
|HnB]=|H"nB|=1+ 1, hence H and H” are distinct from H, and f}. and
fu~are in span A. But by hypothesis (2) of the proposition, since H, H and H”
are distinct hyperplanes containing L, fyespan { fy., fy-} S span 4, complet-
ing the proof of the lemma. O

Proof of Proposition 1.5.5. For any seS§, we define a linear functional L, on V
by L(f)= f(s)eK for all feV. Then the mapping ¢:S— V* s— L, will
coordinatize M(S) if we can show that independent and dependent sets are
preserved under o (since V'*, the dual space of V, is a vector space over K).
Clearly it suffices to consider maximal independent sets, or bases of M, and
minimal dependent sets.

Let {by,b,,...,b,} = B be any basis of M(S). Then from the lemma we
obtain the basis { fy,, fu,,---> fu,} of V, where fy (b;) #0if and only if i =.
Thus L, (fy,) #0ifand only ifi=j,so0 L, , Ly, ..., L, are independent in V*.

Now let {bg,b;,...,b,} be a minimal dependent set in M, k < n. Then the
independent set {b, b,,...,b,} may be extended to a basis {b;,b,,...,b,} =B
of M(S). As before, the lemma provides a basis { fy,, fu,,.-., fu,} of V with
Ly,(fu) #0if and only if i = j. But boe{by,b,,....b,} = B—{b;} foralli>k.
Thus L, (fy,) = 0 for all i > k. Since the linear functional L, is determined by
its values on the basis { fg , fu,,...,fu,} of V, we have L, =¥*_ oL, , where
o; = Ly (fu)/Ly,(fy) Thus L,,L,,...,L, are linearly dependent in V*,
completing the proof of the sufficiency of (1) and (2).

The converse is easy to prove. If {:S — V is a coordinatization of M over K,
then for any hyperplane H, {(H) spans a subspace U which is a hyperplane of V
(that is, a subspace of dimension one less than V). Now, there is a unique (up to
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non-zero scalar multiple) linear functional f;;: ¥V — K whose kernel is U, and
fu=fuel is the desired function, since conditions (1) and (2) may easily be
checked. O

Another sufficient condition for coordinatization, due to Kantor (1975), is
that each coline has at least three hyperplanes and each rank 4 minor is
coordinatizable over a fixed prime field GF(p).

1.6. Brackets

Among the most useful general conditions for coordinatizability are the
bracket conditions. If {: M(S) — V is a coordinatization into a vector space V of
dimension n over a field K, where n=rank M, and if vectors in V are
expressed as column vectors with respect to a standard basis B, then for any
X1y X900, X,€S, we define [xy,%,,...,x,] =det({x,{x,,...,{x,). These
determinants are called the brackets of , and are often denoted [ X], where X
is the sequence (X, X5,...,X,)

The following proposition is closely related to a result widely known to
invariant theorists in the nineteenth century. This result says that assigning
values to the brackets so that certain relations (called syzygies) are satisfied
determines (uniquely, up to linear equivalence) a set of vectors having the
assigned bracket values. Thus a map of S into V is determined simply by
specifying the values of the brackets arbitrarily, provided the syzygies are
satisfied. However, this classical result did not predetermine which bracket
values were to be zero.

1.6.1 Proposition. Let M(S) be a matroid of rank n, and let {x,x,,...,x,] be
assigned a value in the field K, for every xi, X,,...,x,ES. A necessary and
sufficient condition for the existence of a coordinatization { of M over K whose
brackets are precisely the assigned values is that the following relations (or
syzygies) be satisfied:
(1) [x1,%s,...,%,] =0ifand only if {x,, x5,...,x,} is either dependent in M or
contains fewer than n distinct elements.
(2) (Antisymmetry) [X1,Xz,...sXp] — (8gn 6)[X51, X2, -, Xou] =0 for every
permutation o of {1,2,...,n}, for every x;,X,,...,X,€ES.
(3) [xl’xz"'wxn} [ylsyZa"',Yn]_Z?=1[yi’x27"'>xn] [yl’yb"'ayi—la
X1y Vit 1s-+-» Y] =0 for every xy, ..., %p Vi,..., V2€S.

Proof: We first check the necessity. Let { be a coordinatization of M(S). From
elementary properties of determinants, we see immediately that (1) and (2) are
satisfied by the brackets of {. To verify (3), we first note that the equation is
trivial unless some summand is non-zero, and hence either {x,, x,,..., x,} and
{¥1,V2:---»¥u} are both bases of M, or else for some i, {y;x5,...,x,} and
{V1sV2s-++sYim1X1s Vit 1o---» Yn} ar€ both bases. In fact, we may assume the
former of these, for if {y;, X,,...,x,} and {y(, Y2, ..., Vi1, X1, Vis 15+-+» Ya} ATE
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both  bases, the syzygy of type (3) with [y,x,...,x,]
VYo s ¥im1s X, Vi 1r--->Va] as first term is easily checked to
be equivalent to the original syzygy with [x,...,x,][¥1,...,y.] as first term,
using antisymmetry. We now apply the non-singular linear transformation
T:V — V which maps {x; to the j-th unit vector e; of V, for each j. Let T({y;)
=w;eV, and let W be the n x n matrix whose j-th column is w;. Applying T
multiplies every determinant in (3) by the same constant, hence (3) is equivalent
to

(det I)(det W)

n
= ) det(w,e,,...,e,)det (W, Wy, .., W, €, W, 1,...,W,)
i=1

wi(— 1)y~ det Wy, (1.1)

=

i=1

where Wi; is the minor of W with row 1 and column i deleted. But equation
(1.1)isjust the Laplace expansion of det W by its first row. Since T is invertible,
the syzygy (3) is verified.

We now prove the sufficiency. We assume that [x,, x,,..., x,] is given as an
element of K for every x, x,,...,x,€S so that the syzygies are satisfied. We
must construct a coordinatization { whose brackets are equal to the assigned
values, that is

det ({xy, {x5 .o, {x) = [X 1 X35 e e v s Xy ) (1.2)

Let Y={y,,¥2,..-, Y.} be a basis of M(S). Then [Y]+#0, and we may
normalize the bracket values by dividing each of them by [Y]. Since the
syzygies are each homogeneous, they are still satisfied by the normalized
bracket values, and thus we may assume [Y]=1. We now define the i-th
coordinate of the vector {(x) by {(x) = [V 1, Y2+ s Vie 15 % Vit 13- - -» Vol We will
now show that {:S — K" is the desired coordinatization. Actually, it suffices to
show that (1.2) holds for all x,x,,...,x,, for then the fact that { is a
coordinatization follows from syzygy (1).

Let x4,X,,...,X,ES be arbitrary. We may assume that these n elements are
distinct, for otherwise [x,,x,,...,x,]=det({x,{x,,...,{x,)=0. Let X =
{x{,%3,..., %, and k =|X — Y|. We now show (1.2) by induction on k. If k =
0 or 1, then (1.2) holds by the definition of {, so suppose k = 2. Then, using
the induction hypothesis,

[X][Y] = '—Zl [yl’xz"“’xn][yl""5yi—1’x1’yi+19""yn]

= 3 det Qi Lo ExD et e D1 B0 D1 )
= det({X)det({Y)



